Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int. j. cardiovasc. sci. (Impr.) ; 35(4): 459-464, July-Aug. 2022. tab
Article in English | LILACS | ID: biblio-1385263

ABSTRACT

Abstract Background: Hyperthyroidism (Hy) is an endocrine disorder, in which the thyroid hormones markedly alter the cardiac function. Increased myocardial contractility and cardiac output, improvement in diastolic relaxation, changes in electrical activity, increments in ventricular mass, and arrhythmias have been reported. However, the influences of thyroid hormones upon molecular mechanisms of cardiac functions have not yet been fully understood. Objectives: To evaluate changes in cardiac contractile parameters and the Na+/Ca2+ exchanger (NCX) function in induced hyperthyroid rats. Methods: Hy was induced by intraperitoneal injections of T3 (15 μg/100 g) for 10 days. Contractile parameters and NCX function were evaluated in the isolated papillary muscle. Data normality was confirmed by the Shapiro-Wilk test. The comparison between groups was performed through an unpaired Student's t-test. Results are expressed as mean ± SD. The accepted significance level was p < 0.05. Results: Our data revealed, in the Hy group, an increase of 30.98% in the maximum speed of diastolic relaxation (-284.64 ± 70.70 vs. -217.31 ± 40.30 mN/mm2/sec (p = 0.027)) and a boost of 149% in the NCX function in late phase of relaxation (20.17 ± 7.90 vs. 50.22 ± 11.94 minutes (p = 0.002)), with no changes in the maximum twitch force (p = 0.605) or maximum speed of systolic contraction (p = 0.208) when compared to the control. Conclusion: The improvement in relaxation parameters is hypothetically attributed to an increase in Sarco-Endoplasmic Reticulum Ca2+ATPase isoform 2 (SERCA2) expression and an increased calcium flow through L-type channels that boosted the NCX function.


Subject(s)
Animals , Male , Rats , Papillary Muscles/physiology , Sodium-Calcium Exchanger/physiology , Hyperthyroidism/complications , Thyroid Hormones , Rats, Wistar
3.
Acta Physiologica Sinica ; (6): 757-764, 2020.
Article in English | WPRIM | ID: wpr-878223

ABSTRACT

The aim of the present paper was to study the role of sodium calcium exchanger (NCX) in the generation of action potentials (APs) in cardiomyocytes during early developmental stage (EDS). The precisely dated embryonic hearts of C57 mice were dissected and enzymatically dissociated to single cells. The changes of APs were recorded by whole-cell patch-clamp technique before and after administration of NCX specific blockers KB-R7943 (5 μmol/L) and SEA0400 (1 μmol/L). The results showed that, both KB-R7943 and SEA0400 had potent negative chronotropic effects on APs of pacemaker-like cells, while such effects were only observed in some ventricular-like cardiomyocytes. The negative chronotropic effect of KB-R7943 on ventricular-like cardiomyocytes was accompanied by shortening of AP duration (APD), whereas such an effect of SEA0400 was paralleled by decrease in velocity of diastolic depolarization (Vdd). From embryonic day 9.5 (E9.5) to E10.5, the negative chronotropic effects of KB-R7943 and SEA0400 on ventricular-like APs of embryonic cardiomyocytes gradually disappeared. These results suggest that, in the short-term development of early embryo, the function of NCX may experience developmental changes as evidenced by different roles of NCX in autorhythmicity and APs generation, indicating that NCX function varies with different conditions of cardiomyocytes.


Subject(s)
Animals , Mice , Action Potentials , Calcium/metabolism , Myocytes, Cardiac/metabolism , Sodium/metabolism , Sodium-Calcium Exchanger , Thiourea/pharmacology
4.
Braz. j. med. biol. res ; 52(6): e8085, 2019. tab, graf
Article in English | LILACS | ID: biblio-1001538

ABSTRACT

Obesity is often associated with changes in cardiac function; however, the mechanisms responsible for functional abnormalities have not yet been fully clarified. Considering the lack of information regarding high-saturated-fat diet-induced obesity, heart function, and the proteins involved in myocardial calcium (Ca2+) handling, the aim of this study was to test the hypothesis that this dietary model of obesity leads to cardiac dysfunction resulting from alterations in the regulatory proteins of intracellular Ca2+ homeostasis. Male Wistar rats were distributed into two groups: control (C, n=18; standard diet) and obese (Ob, n=19; high-saturated-fat diet), which were fed for 33 weeks. Cardiac structure and function were evaluated using echocardiographic and isolated papillary muscle analyses. Myocardial protein expressions of sarcoplasmic reticulum Ca2+-ATPase, phospholamban (PLB), PLB serine-16 phosphorylation, PLB threonine-17 phosphorylation, ryanodine receptor, calsequestrin, Na+/Ca2+ exchanger, and L-type Ca2+ channel were assessed by western blot. Obese rats presented 104% increase in the adiposity index (C: 4.5±1.4 vs Ob: 9.2±1.5%) and obesity-related comorbidities compared to control rats. The left atrium diameter (C: 5.0±0.4 vs Ob: 5.5±0.5 mm) and posterior wall shortening velocity (C: 36.7±3.4 vs Ob: 41.8±3.8 mm/s) were higher in the obese group than in the control. The papillary muscle function was similar between the groups at baseline and after inotropic and lusitropic maneuvers. Obesity did not lead to changes in myocardial Ca2+ handling proteins expression. In conclusion, the hypothesis was not confirmed, since the high-saturated-fat diet-induced obese rats did not present cardiac dysfunction or impaired intracellular Ca2+ handling proteins.


Subject(s)
Animals , Male , Rats , Calcium/physiology , Sodium-Calcium Exchanger/physiology , Diet, High-Fat/adverse effects , Heart/physiopathology , Obesity/physiopathology , Blood Pressure/physiology , Echocardiography , Rats, Wistar , Disease Models, Animal
5.
Acta Physiologica Sinica ; (6): 809-823, 2019.
Article in English | WPRIM | ID: wpr-781394

ABSTRACT

Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one. However, the roles of histamine and hypothalamic histaminergic innervation on spinal motoneurons and the underlying ionic mechanisms are still largely unknown. In the present study, by using the method of intracellular recording on rat spinal slices, we found that activation of either H or H receptor potentiated repetitive firing behavior and increased the excitability of spinal α-motoneurons. Both of blockage of K channels and activation of Na-Ca exchangers were involved in the H receptor-mediated excitation on spinal motoneurons, whereas the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were responsible for the H receptor-mediated excitation. The results suggest that, through switching functional status of ion channels and exchangers coupled to histamine receptors, histamine effectively biases the excitability of the spinal α-motoneurons. In this way, the hypothalamospinal histaminergic innervation may directly modulate final motor outputs and actively regulate spinal motor reflexes and motor execution.


Subject(s)
Animals , Rats , Histamine , Pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Metabolism , Motor Neurons , Physiology , Receptors, Histamine H2 , Metabolism , Sodium-Calcium Exchanger , Metabolism
6.
ABCD (São Paulo, Impr.) ; 31(1): e1352, 2018. tab
Article in English | LILACS | ID: biblio-949203

ABSTRACT

ABSTRACT Background: Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. Aim: To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Methods: Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Results: Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. Conclusions: The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.


RESUMO Racional: A lesão celular da pancreatite aguda (PA) envolve sobrecarga de cálcio, regulada pela atividade da Cálcio ATPase de membrana (PMCA), Cálcio ATPase do Retículo (SERCA2) e pelo Trocador Sódio Cálcio (NCX1). A melatonina (antioxidante) e o Dissacarídeo Trissulfatado (acelerador do NCX1) poderiam reduzir a lesão celular na PA. Objetivo: Avaliar a expressão do RNAm da SERCA2 e NCX1 em modelo animal de pancreatite aguda tratados com melatonina e/ou dissacarídeo trissulfatado (DT). Método: Ratos Wistar foram divididos em grupos: 1) sem pancreatite aguda; 2) com pancreatite aguda por taurocolato; 3) PA e Melatonina; 4) PA e DT; 5) PA e Melatonina com DT. Amostras de tecido foram colhidas para detecção dos níveis de RNAm da SERCA2 e NCX1 por PCR. Resultados: Houve aumento da expressão do RNAm da SERCA2 no grupo com PA tratados com Melatonina, porém sem aumento de expressão do NCX1. O DT não afetou os níveis de SERCA2 e NCX1. O tratamento conjunto com Melatonina e DT diminuiu a expressão da SERCA2. Conclusões: O efeito da Melatonina é restrito ao aumento da expressão da SERCA2. O DT não tem ação na expressão gênica, porém sua ação na aceleração do trocador na retirada do cálcio pode explicar a menor expressão da SERCA2 quando associado à Melatonina, pela ação conjunta de drogas com mecanismos diferentes e possivelmente complementares.


Subject(s)
Animals , Male , Rats , Pancreatitis/genetics , RNA, Messenger/biosynthesis , Sodium-Calcium Exchanger/genetics , Cytoprotection/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Pancreatitis/chemically induced , Taurocholic Acid/administration & dosage , Acute Disease , Rats, Wistar , Disaccharides/pharmacology , Disease Models, Animal , Melatonin/pharmacology
7.
São Paulo; s.n; s.n; 2018. 100 p. ilus, graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-967935

ABSTRACT

Proteínas de membrana estão envolvidas em processos fisiológicos essenciais como, por exemplo, a manutenção do equilíbrio iônico e sinalização intracelular. No entanto, apesar do envolvimento em inúmeros processos fisiológicos e de grande interesse farmacêutico, o estudo estrutural de proteínas de membrana ainda é um processo custoso e muito mais complexo do que o estudo estrutural de proteínas solúveis. Os trocadores de Na+/Ca2+ são proteínas de membrana que atuam na manutenção da homeostase de Ca2+ intracelular e estão envolvidos em processos patológicos como doenças cardíacas. Estes trocadores estão presentes em diversas espécies de mamíferos (NCX) e insetos, por exemplo, na mosca Drosophila melanogaster (CALX). A topologia destas proteínas é constituída de dois domínios. O domínio transmembranar, que contém dois segmentos de 5 hélices transmembranares (TMH) e é responsável por promover o transporte específico de íons Ca2+ e Na+ através da membrana, e o domínio citoplasmático, responsável por regular a atividade do trocador. O domínio citoplasmático consiste de uma alça que contém dois domínios sensores de Ca2+ intracelular (CBD1 e CBD2). Trabalhos mostraram que o trocador CALX é inibido pela ligação de Ca em CBD1, enquanto que trocadores NCX são ativados. As regiões citosólicas que conectam CBD1 e CBD2 à TMH5 e TMH6 são conservadas e ainda não foram caracterizadas estruturalmente. Adjacente à TMH5 há um segmento anfipático, denominado exchanger inhibitory peptide (XIP), que está envolvido no mecanismo de regulação do trocador. Na ausência de dados estruturais do CALX completo, o estudo de TMH5-XIP poderá aumentar a compreensão sobre a estrutura e o funcionamento do trocador. A construção TMH5-XIP foi fusionada à MBP no N-terminal e a uma sequência de 8 histidinas no C-terminal. Apesar da expressão da proteína de fusão ter sido bem sucedida, problemas de precipitação e ineficiência durante a clivagem da conexão com a MBP impediram a conclusão dos estudos estruturais. Logo, uma construção menor, contendo apenas a região equivalente ao XIP, foi estudada por espectroscopia de RMN em solução e dicroísmo circular. XIP forma uma 310-hélice a baixa temperatura, 7 oC, que se desestabiliza a maior temperatura, 27 oC. Estes dados permitem a formulação de hipóteses sobre o papel de XIP no mecanismo de regulação do domínio transmembranar de CALX


Membrane proteins are involved in essential physiological processes such as maintenance of the ionic balance and intracellular signaling. However, despite their role in numerous physiological processes of well-recognized pharmaceutical relevance, structural studies of membrane proteins remain being more complex than structural studies of globular proteins. Na+/Ca2+ exchangers (NCX) are membrane proteins that play essential roles in the maintenance of the intracellular Ca2+ homeostasis. Not surprisingly, the NCXs are involved in pathologies such as heart diseases. These exchangers are present in several species of mammals (NCX) and insects, for example, in the fly Drosophila melanogaster (CALX). The topology of these proteins consists of a transmembrane and a hydrophilic domain. The transmembrane domain corresponds to two segments of 5 transmembrane helices (TMH) forming a 10-helix bundle that is responsible for the specific transport of Ca2+ and Na+ across the cellular membrane. The hydrophilic domain is composed of a large cytoplasmic loop, which is associated with the regulation of the ion exchange activity of the transmembrane domain. The loop contains two Ca2+-sensors domains, CBD1 and CBD2, and uncharacterized regions. Studies showed that Ca2+ binding to CBD1 inhibits the CALX, whereas it activates the NCX. The juxtamembrane cytosolic regions linking the CBD1 and CBD2 domains to the TMH5 and TMH6, respectively, are highly conserved but have not yet been structurally characterized. The segment near TMH5 is amphipathic, and it is also called exchanger inhibitory peptide (XIP). In the absence of a three-dimensional structure of the complete CALX, the study of TMH5-XIP may contribute to our understanding of the structure and operation of the exchanger. In order to study TMH5-XIP, it was fused to an MBP tag at the N-terminus, and to a sequence of 8 histidines at the C-terminus. Although the expression of the fusion protein was successful, precipitation and inefficient MBP-tag cleavage prevented the isolation of pure TMH5-XIP for structural studies. Hence, a smaller construct, containing only the region equivalent to XIP, was studied by NMR spectroscopy in solution and circular dichroism. The structure assumed by XIP in solution is temperature dependent, being intrinsically disordered at 27 C or a 310-helix at 7 C, respectively. These findings allowed us to infer how XIP could participate in the CALX regulation mechanism


Subject(s)
Sodium-Calcium Exchanger/analysis , Magnetic Resonance Spectroscopy/methods , Drosophila melanogaster/metabolism
8.
São Paulo; s.n; s.n; 2018. 100 p. ilus, graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-999255

ABSTRACT

Proteínas de membrana estão envolvidas em processos fisiológicos essenciais como, por exemplo, a manutenção do equilíbrio iônico e sinalização intracelular. No entanto, apesar do envolvimento em inúmeros processos fisiológicos e de grande interesse farmacêutico, o estudo estrutural de proteínas de membrana ainda é um processo custoso e muito mais complexo do que o estudo estrutural de proteínas solúveis. Os trocadores de Na+/Ca2+ são proteínas de membrana que atuam na manutenção da homeostase de Ca2+ intracelular e estão envolvidos em processos patológicos como doenças cardíacas. Estes trocadores estão presentes em diversas espécies de mamíferos (NCX) e insetos, por exemplo, na mosca Drosophila melanogaster (CALX). A topologia destas proteínas é constituída de dois domínios. O domínio transmembranar, que contém dois segmentos de 5 hélices transmembranares (TMH) e é responsável por promover o transporte específico de íons Ca2+ e Na+ através da membrana, e o domínio citoplasmático, responsável por regular a atividade do trocador. O domínio citoplasmático consiste de uma alça que contém dois domínios sensores de Ca2+ intracelular (CBD1 e CBD2). Trabalhos mostraram que o trocador CALX é inibido pela ligação de Ca em CBD1, enquanto que trocadores NCX são ativados. As regiões citosólicas que conectam CBD1 e CBD2 à TMH5 e TMH6 são conservadas e ainda não foram caracterizadas estruturalmente. Adjacente à TMH5 há um segmento anfipático, denominado exchanger inhibitory peptide (XIP), que está envolvido no mecanismo de regulação do trocador. Na ausência de dados estruturais do CALX completo, o estudo de TMH5-XIP poderá aumentar a compreensão sobre a estrutura e o funcionamento do trocador. A construção TMH5-XIP foi fusionada à MBP no N-terminal e a uma sequência de 8 histidinas no C-terminal. Apesar da expressão da proteína de fusão ter sido bem sucedida, problemas de precipitação e ineficiência durante a clivagem da conexão com a MBP impediram a conclusão dos estudos estruturais. Logo, uma construção menor, contendo apenas a região equivalente ao XIP, foi estudada por espectroscopia de RMN em solução e dicroísmo circular. XIP forma uma 310-hélice a baixa temperatura, 7 oC, que se desestabiliza a maior temperatura, 27 oC. Estes dados permitem a formulação de hipóteses sobre o papel de XIP no mecanismo de regulação do domínio transmembranar de CALX


Membrane proteins are involved in essential physiological processes such as maintenance of the ionic balance and intracellular signaling. However, despite their role in numerous physiological processes of well-recognized pharmaceutical relevance, structural studies of membrane proteins remain being more complex than structural studies of globular proteins. Na+/Ca2+ exchangers (NCX) are membrane proteins that play essential roles in the maintenance of the intracellular Ca2+ homeostasis. Not surprisingly, the NCXs are involved in pathologies such as heart diseases. These exchangers are present in several species of mammals (NCX) and insects, for example, in the fly Drosophila melanogaster (CALX). The topology of these proteins consists of a transmembrane and a hydrophilic domain. The transmembrane domain corresponds to two segments of 5 transmembrane helices (TMH) forming a 10-helix bundle that is responsible for the specific transport of Ca2+ and Na+ across the cellular membrane. The hydrophilic domain is composed of a large cytoplasmic loop, which is associated with the regulation of the ion exchange activity of the transmembrane domain. The loop contains two Ca2+-sensors domains, CBD1 and CBD2, and uncharacterized regions. Studies showed that Ca2+ binding to CBD1 inhibits the CALX, whereas it activates the NCX. The juxtamembrane cytosolic regions linking the CBD1 and CBD2 domains to the TMH5 and TMH6, respectively, are highly conserved but have not yet been structurally characterized. The segment near TMH5 is amphipathic, and it is also called exchanger inhibitory peptide (XIP). In the absence of a three-dimensional structure of the complete CALX, the study of TMH5-XIP may contribute to our understanding of the structure and operation of the exchanger. In order to study TMH5-XIP, it was fused to an MBP tag at the N-terminus, and to a sequence of 8 histidines at the C-terminus. Although the expression of the fusion protein was successful, precipitation and inefficient MBP-tag cleavage prevented the isolation of pure TMH5-XIP for structural studies. Hence, a smaller construct, containing only the region equivalent to XIP, was studied by NMR spectroscopy in solution and circular dichroism. The structure assumed by XIP in solution is temperature dependent, being intrinsically disordered at 27 C or a 310-helix at 7 C, respectively. These findings allowed us to infer how XIP could participate in the CALX regulation mechanism


Subject(s)
Magnetic Resonance Spectroscopy/methods , Sodium-Calcium Exchanger/analysis , Peptides , Drosophila melanogaster/classification , Membrane Proteins
9.
Arq. bras. cardiol ; 107(6): 542-549, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-838656

ABSTRACT

Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.


Resumo Fundamento: Sabe-se atualmente que o hipertireoidismo afeta o sistema cardiovascular, ocasionando uma série de alterações funcionais e moleculares. No entanto, pouco se sabe sobre a influência funcional do hipertireoidismo na regulação do cálcio citoplasmático e no trocador de sódio/cálcio (NCX) no músculo cardíaco. Objetivos: Avaliar as alterações funcionais de músculos papilares isolados de animais com hipertireoidismo induzido. Métodos: Ao todo, 36 ratos Wistar foram distribuídos em um grupo controle e outro grupo com hipertireoidismo induzido por injeção intraperitoneal de T3. Nos músculos papilares isolados dos animais foram medidos a força máxima de contração, a velocidade de contração (+df/dt) e relaxamento (-df/dt), o tempo de contração e relaxamento, a força de contração em diferentes concentrações de sódio extracelular, o potenciação pós-pausa (PPP) e a força de contração induzida por cafeína. Resultados: Em animais com hipertireoidismo, observamos uma diminuição da PPP em todos os períodos de repouso (p < 0,05), aumento do +df/dt e -df/dt (p < 0,001), baixa resposta inotrópica positiva à concentração reduzida de sódio extracelular (p < 0,001), diminuição da força máxima de contração induzida por cafeína (p < 0,003) e diminuição do tempo total de contração (p < 0,001). A força máxima de contração não diferiu significativamente entre os grupos (p = 0,973). Conclusões: Nossa hipótese é de que as alterações observadas são provavelmente resultantes de uma diminuição do conteúdo de cálcio do retículo sarcoplasmático causada por vazamento de cálcio, redução da expressão do NCX e aumento da expressão de a-MHC e SERCA2.


Subject(s)
Animals , Male , Papillary Muscles/physiopathology , Heart/physiopathology , Hyperthyroidism/physiopathology , Organ Size , Reference Values , Time Factors , Transducers , Random Allocation , Calcium/analysis , Calcium/metabolism , Rats, Wistar , Sodium-Calcium Exchanger/metabolism , Muscle Strength/physiology , Myocardial Contraction/physiology
10.
Chinese Journal of Stomatology ; (12): 627-630, 2015.
Article in Chinese | WPRIM | ID: wpr-294658

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the expression of Na(+)/Ca(2+) exchanger 1 (NCX1) channel protein in human odontoblasts (OD) and nervous tissue of dental pulp.</p><p><b>METHODS</b>Twenty intact and healthy third molars extracted for orthodontic purpose were collected. The OD layer and nervous tissue were determined by dentin sialophosphoproteins (DSPP) antibody staining and modified Bielschowsky silver staining respectivelly. The immunohistochemical method was used to detect the expressions of NCX1 protein in human dental pulp tissue. The difference of expression of NCX1 in human OD at different part of dental pulp was statistically analyzed using Image Pro Plus and SPSS software.</p><p><b>RESULTS</b>NCX1 channel protein was mainly expressed on the cell body of OD, and nervous tissue of dental pulp. The expression level of NCX1 on the OD of crown pulp was higher (A = 0.146 ± 0.021) than that on the upper part of root pulp (A = 0.120 ± 0.034), but the expression difference was not significant (P > 0.05).</p><p><b>CONCLUSIONS</b>NCX1 channel protein was expressed on human OD and nervous tissue in dental pulp.</p>


Subject(s)
Humans , Dental Pulp , Metabolism , Dentin , Chemistry , Molar , Odontoblasts , Metabolism , Sodium-Calcium Exchanger , Metabolism , Tooth Crown
11.
Chinese Medical Journal ; (24): 3083-3087, 2015.
Article in English | WPRIM | ID: wpr-275563

ABSTRACT

<p><b>BACKGROUND</b>Na + /Ca 2+ exchanger (NCX) plays a crucial role in pentylenetetrazol-induced convulsion. However, it is unclear whether NCX is critically involved in hyperthermia-induced convulsion. In this study, we examined the potential changes in NCX3 in the hippocampus and cerebrocortex of rats with hyperthermia-induced convulsion.</p><p><b>METHODS</b>Twenty-one Sprague Dawley rats were randomly assigned to control group, convulsion-prone group and convulsion-resistant group (n = 7 in each group). Whole-cell patch-clamp method was used to record NCX currents. Both the Western blotting analysis and immunofluorescence labeling techniques were used to examine the expression of NCX3.</p><p><b>RESULTS</b>NCX currents were decreased in rats after febrile convulsion. Compared to the control group, NCX3 expression was decreased by about 40% and 50% in the hippocampus and cerebrocortex of convulsion-prone rats, respectively. Furthermore, the extent of reduction in NCX3 expression seemed to correlate with the number of seizures.</p><p><b>CONCLUSIONS</b>There is a significant reduction in NCX3 expression in rats with febrile convulsions. Our findings also indicate a potential link between NCX3 expression, febrile convulsion in early childhood, and adult onset of epilepsy.</p>


Subject(s)
Animals , Female , Pregnancy , Rats , Cerebral Cortex , Metabolism , Down-Regulation , Fever , Hippocampus , Metabolism , Rats, Sprague-Dawley , Seizures , Metabolism , Sodium-Calcium Exchanger , Metabolism
12.
Protein & Cell ; (12): 783-794, 2014.
Article in English | WPRIM | ID: wpr-757650

ABSTRACT

Upon glucose elevation, pancreatic beta-cells secrete insulin in a Ca(2+)-dependent manner. In diabetic animal models, different aspects of the calcium signaling pathway in beta-cells are altered, but there is no consensus regarding their relative contributions to the development of beta-cell dysfunction. In this study, we compared the increase in cytosolic Ca(2+) ([Ca(2+)]i) via Ca(2+) influx, Ca(2+) mobilization from endoplasmic reticulum (ER) calcium stores, and the removal of Ca(2+) via multiple mechanisms in beta-cells from both diabetic db/db mice and non-diabetic C57BL/6J mice. We refined our previous quantitative model to describe the slow [Ca(2+)]i recovery after depolarization in beta-cells from db/db mice. According to the model, the activity levels of the two subtypes of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump, SERCA2 and SERCA3, were severely down-regulated in diabetic cells to 65% and 0% of the levels in normal cells. This down-regulation may lead to a reduction in the Ca(2+) concentration in the ER, a compensatory up-regulation of the plasma membrane Na(+)/Ca(2+) exchanger (NCX) and a reduction in depolarization-evoked Ca(2+) influx. As a result, the patterns of glucose-stimulated calcium oscillations were significantly different in db/db diabetic beta-cells compared with normal cells. Overall, quantifying the changes in the calcium signaling pathway in db/db diabetic beta-cells will aid in the development of a disease model that could provide insight into the adaptive transformations of beta-cell function during diabetes development.


Subject(s)
Animals , Mice , Calcium , Metabolism , Calcium Signaling , Cell Membrane Permeability , Cells, Cultured , Down-Regulation , Endoplasmic Reticulum , Metabolism , Glucose , Pharmacology , Insulin-Secreting Cells , Cell Biology , Metabolism , Mice, Inbred C57BL , Mice, Obese , Potassium Chloride , Pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Metabolism , Sodium-Calcium Exchanger , Metabolism , Thapsigargin , Pharmacology , Up-Regulation
13.
Acta Physiologica Sinica ; (6): 241-251, 2014.
Article in Chinese | WPRIM | ID: wpr-297495

ABSTRACT

Sodium calcium exchanger (NCX), which is widely expressed in the plasma membrane, mitochondrial membrane and secretory vesicles in diverse kinds of cells, belongs to a type of cation translocators. NCX works in two modes, the forward mode and reverse mode, to regulate the intracellular Ca(2+) concentration bi-directionally. In the forward mode, NCX carries Ca(2+) out of the cell against its electrochemical gradients coupled to the influx of Na(+) down its electrochemical gradients; alternatively, Ca(2+) enters through the reverse mode of NCX, and Na(+) is carried out of the cell. Exactly through the two-way modes, NCX can regulate intracellular Ca(2+) concentration fleetly and accurately, and plays a critical role in a series of physiological processes including intracellular signal transduction, growth and development of cells, excitation and its coupled functions of excitable cells. NCX are acknowledged to be involved in myofiber contraction, neurotransmission, migration and differentiation of neurogliocyte, activation of immune cells, secretion of cytokines and hormones etc. Moreover, abnormal activation of the reverse mode of NCX plays a vital role in many pathological processes including cell apoptosis, ischemia-reperfusion injury, insulin secretion, tumor etc. Here we reviewed the research status about the NCX's participation in some physiological and pathophysiological processes, so as to provide comprehensive understanding about its functions.


Subject(s)
Animals , Humans , Apoptosis , Calcium , Physiology , Ion Transport , Reperfusion Injury , Signal Transduction , Sodium , Physiology , Sodium-Calcium Exchanger , Physiology
14.
Korean Journal of Anesthesiology ; : 143-152, 2014.
Article in English | WPRIM | ID: wpr-92339

ABSTRACT

BACKGROUND: Phenylephrine (PE) produces tonic contraction through involvement of various calcium channels such as store-operated calcium channels (SOCCs) and voltage-operated calcium channels (VOCCs). However, the relative contribution of each calcium channel to PE-induced contraction has not been investigated in isolated rat aorta of early acute myocardial infarction (AMI). METHODS: Endothelium-denuded rat aortic rings from rats 3 days after AMI or sham-operated (SHAM) rats were prepared in an organ chamber with Krebs-Ringer bicarbonate solution for isometric tension recording. We assessed the PE dose-response relationships in 2.5 mM calcium medium for both groups. The same procedure was repeated using rings pretreated with the SOCC inhibitor 2-aminoethoxydiphenyl borate, sarco/endoplasmic-reticulum calcium ATPase inhibitor thapsigargin (TG), diacyl glycerol lipase inhibitor RHC80267, and sodium-calcium exchanger inhibitor 3,4-dichlorobenzamil hydrochloride for 30 minutes before addition of calcium. When ongoing tonic contraction was sustained, dose-response curves to the VOCC inhibitor nifedipine were obtained to assess the relative contribution of each calcium channel under various conditions. RESULTS: The effect of SOCC induction with TG pretreatment on PE-induced contraction was significantly lower in the AMI group compared to the SHAM group. In addition, there were significant decreases in the sensitivity and efficacy of the VOCC inhibitor nifedipine on PE-induced contraction in the AMI group. CONCLUSIONS: Results suggest that the change of vascular reactivity of PE in rat aorta 3 days after AMI is characterized by a decreased contribution of L-type VOCCs. The enhanced VOCC-independent calcium entry mechanisms after AMI can be mediated by enhanced capacitative calcium entry through the activation of SOCCs.


Subject(s)
Animals , Rats , Aorta , Calcium Channels , Calcium , Calcium-Transporting ATPases , Glycerol , Lipase , Myocardial Infarction , Nifedipine , Phenylephrine , Sodium-Calcium Exchanger , Thapsigargin
15.
Korean Circulation Journal ; : 16-21, 2014.
Article in English | WPRIM | ID: wpr-52950

ABSTRACT

BACKGROUND AND OBJECTIVES: An increase in intracellular calcium concentration due to loss of Ca2+ homeostasis triggers arrhythmia or cardiac cell death in the heart. Paracrine factors released from stem cells have beneficial cardioprotective effects. However, the mechanism of modulation of Ca2+ homeostasis by paracrine factors in ischemic myocardium remains unclear. MATERIALS AND METHODS: We isolated rat bone marrow-derived mesenchymal stem cells (MSCs), and prepared paracrine media (PM) from MSCs under hypoxic or normoxic conditions (hypoxic PM and normoxic PM). We induced rat myocardial infarction by left anterior descending ligation for 1 hour, and treated PM into the border region of infarcted myocardium (n=6/group) to identify the alteration in calcium-regulated proteins. We isolated and stained the heart tissue with specific calcium-related antibodies after 11 days. RESULTS: The hypoxic PM treatment increased Ca2+-related proteins such as L-type Ca2+ channel, sarcoplasmic reticulum Ca2+ ATPase, Na+/K+ ATPase, and calmodulin, whereas the normoxic PM treatment increased those proteins only slightly. The sodium-calcium exchanger was significantly reduced by hypoxic PM treatment, compared to moderate suppression by the normoxic PM treatment. CONCLUSION: Our results suggest that hypoxic PM was significantly associated with the positive regulation of Ca2+ homeostasis in infarcted myocardium.


Subject(s)
Animals , Rats , Adenosine Triphosphatases , Antibodies , Arrhythmias, Cardiac , Calcium , Calcium-Transporting ATPases , Calmodulin , Cell Death , Heart , Homeostasis , Ligation , Mesenchymal Stem Cells , Myocardial Infarction , Myocardium , Paracrine Communication , Sarcoplasmic Reticulum , Sodium-Calcium Exchanger , Stem Cells
16.
Journal of Korean Medical Science ; : 700-708, 2013.
Article in English | WPRIM | ID: wpr-80579

ABSTRACT

This study investigated the role of angiotensin II receptor blocker in atrial remodeling in rats with atrial fibrillation (AF) induced by a myocardial infarction (MI). MIs were induced by a ligation of the left anterior descending coronary artery. Two days after, the rats in the losartan group were given losartan (10 mg/kg/day for 10 weeks). Ten weeks later, echocardiography and AF induction studies were conducted. Ejection fraction was significantly lower in the MI rats. Fibrosis analysis revealed much increased left atrial fibrosis in the MI group than sham (2.22 +/- 0.66% vs 0.25 +/- 0.08%, P = 0.001) and suppression in the losartan group (0.90 +/- 0.27%, P 0.001) compared with the MI group. AF inducibility was higher in the MI group than sham (39.4 +/- 43.0% vs 2.0 +/- 6.3%, P = 0.005) and significantly lower in losartan group (12.0 +/- 31.6%, P = 0.029) compared with the MI. The left atrial endothelial nitric oxide synthase (NOS) and sarco/endoplasmic reticulum Ca(2+)-ATPase levels were lower in the MI group and higher in the losartan group significantly. The atrial inducible NOS and sodium-calcium exchanger levels were higher in the MI and lower in the losartan group significantly. Losartan disrupts collagen fiber formation and prevents the alteration of the tissue eNOS and iNOS levels, which prevent subsequent AF induction.


Subject(s)
Animals , Male , Rats , Angiotensin Receptor Antagonists/therapeutic use , Atrial Fibrillation/prevention & control , Atrial Remodeling , Disease Models, Animal , Fibrosis , Heart Failure/etiology , Immunohistochemistry , Losartan/therapeutic use , Myocardial Infarction/complications , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats, Sprague-Dawley , Receptors, Angiotensin/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism
17.
Arq. bras. cardiol ; 98(3): 243-251, mar. 2012. tab
Article in Portuguese | LILACS | ID: lil-622515

ABSTRACT

FUNDAMENTO: A Contração Pós-Repouso (CPR) do músculo cardíaco fornece informações indiretas sobre a manipulação de cálcio intracelular. OBJETIVO: Nosso objetivo foi estudar o comportamento da CPR e seus mecanismos subjacentes em camundongos com infarto do miocárdio. MÉTODOS: Seis semanas após a oclusão coronariana, a contratilidade dos Músculos Papilares (MP) obtidos a partir de camundongos submetidos à cirurgia sham (C, n = 17), com infarto moderado (MMI, n = 10) e grande infarto (LMI, n = 14), foi avaliada após intervalos de repouso de 10 a 60 segundos antes e depois da incubação com cloreto de lítio (Li+) em substituição ao cloreto de sódio ou rianodina (Ry). A expressão proteica de SR Ca(2+)-ATPase (SERCA2), trocador Na+/Ca2+ (NCX), fosfolambam (PLB) e fosfo-Ser (16)-PLB foi analisada por Western blotting. RESULTADOS: Os camundongos MMI apresentaram potenciação de CPR reduzida em comparação aos camundongos C. Em oposição à potenciação normal para camundongos C, foram observadas degradações de força pós-repouso nos músculos de camundongos LMI. Além disso, a Ry bloqueou a degradação ou potenciação de PRC observada em camundongos LMI e C; o Li+ inibiu o NCX e converteu a degradação em potenciação de CPR em camundongos LMI. Embora os camundongos MMI e LMI tenham apresentado diminuição no SERCA2 (72 ± 7% e 47 ± 9% de camundongos controle, respectivamente) e expressão protéica de fosfo-Ser16-PLB (75 ± 5% e 46 ± 11%, respectivamente), a superexpressão do NCX (175 ± 20%) só foi observada nos músculos de camundongos LMI. CONCLUSÃO: Nossos resultados mostraram, pela primeira vez, que a remodelação miocárdica pós-IAM em camundongos pode mudar a potenciação regular para degradação pós-repouso, afetando as proteínas de manipulação de Ca(2+) em miócitos.


BACKGROUND: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. OBJECTIVE: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. METHODS: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n=17), moderate infarcted (MMI, n=10) and large infarcted (LMI, n=14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. RESULTS: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72±7% and 47±9% of Control, respectively) and phospho-Ser16-PLB (75±5% and 46±11%, respectively) protein expression, overexpression of NCX (175±20%) was only observed in LMI muscles. CONCLUSION: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins.


FUNDAMENTO: La Contracción pos pausa (CPP) del músculo cardíaco provee informaciones indirectas sobre la manejo del calcio intracelular. OBJETIVO: Nuestro objetivo fue estudiar el comportamiento de la CPP y sus mecanismos subyacentes en Ratas con infarto de miocardio. MÉTODOS: Seis semanas después de la oclusión coronaria, la contractilidad de los Músculos Papilares (MP) obtenidos a partir de Ratas sometidos a falsa cirurgia (C, n = 17), con infarto moderado (MMI, n = 10) y gran infarto (LMI, n = 14), fue evaluada después de pausas de estímulos de 10 a 60 segundos antes y después de la incubación con cloruro de litio (Li+) en substitución del cloruro de sodio o rianodina (Ry). La expresión proteica de SR Ca(2+)-ATPasa (SERCA2), intercambiador Na+/Ca2+ (NCX), fosfolamban (PLB) y fosfo-Ser (16)-PLB fue analizada por Western blotting. RESULTADOS: Los Ratas MMI presentaron potenciación de CPP reducida en comparación a los Ratas C. En oposición a la potenciación normal para Ratas C, fueron observadas decaimientos de fuerza post-reposo en los músculos de Ratas LMI. Además de eso, la Ry bloqueó la decaimiento o potenciación de PRC observada en Ratas LMI y C; el Li+ inhibió el NCX y convirtió la decaimiento en potenciación de CPP en Ratas LMI. Aunque los Ratas MMI y LMI hayan presentado disminución en el SERCA2 (72 ± 7% y 47 ± 9% de Ratas control, respectivamente) y expresión proteica de fosfo-Ser16-PLB (75 ± 5% y 46 ± 11%, respectivamente), la superexpresión del NCX (175 ± 20%) sólo fue observada en los músculos de Ratas LMI. CONCLUSIÓN: Nuestros resultados mostraron, por primera vez, que el remodelado miocárdico post-IAM en Ratas puede cambiar la potenciación regular para decaimiento post-reposo, afectando las proteínas de manejo del Ca(2+) en miocitos.


Subject(s)
Animals , Rats , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Myocardial Contraction/drug effects , Myocardial Infarction/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Ventricular Remodeling/physiology , Disease Models, Animal , Lithium Chloride/pharmacology , Myocardial Contraction/physiology , Myocardial Infarction/classification , Myocytes, Cardiac/metabolism , Papillary Muscles/metabolism , Random Allocation , Rats, Wistar , Ryanodine/pharmacology
18.
Acta Physiologica Sinica ; (6): 321-326, 2012.
Article in Chinese | WPRIM | ID: wpr-333195

ABSTRACT

Ischemia-reperfusion injury (IRI) has been recognized as a serious problem for therapy of cardiovascular diseases. Calcium regulation appears to be an important issue in the study of IRI. This article reviews calcium regulation in myocardial and vascular IRI, including the calcium overload and calcium sensitivity in IRI. This review is focused on the key players in Ca(2+) handling in IRI, including membrane damage resulting in increase in Ca(2+) influx, reverse-mode of Na(+)-Ca(2+) exchangers leading to increased Ca(2+) entry, the decreased activity of sarcoplasmic reticulum (SR) Ca(2+)-ATPase causing SR Ca(2+) uptake dysfunction, and increased activity of Rho kinase. These key players in Ca(2+) homeostasis will provide promising strategies and potential targets for therapy of cardiovascular IRI.


Subject(s)
Animals , Humans , Calcium , Metabolism , Heart , Homeostasis , Myocardial Reperfusion Injury , Metabolism , Myocardium , Sarcoplasmic Reticulum , Metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Metabolism , Sodium-Calcium Exchanger , Metabolism
19.
Acta Physiologica Sinica ; (6): 433-443, 2012.
Article in Chinese | WPRIM | ID: wpr-333182

ABSTRACT

The objectives of this study were to investigate the effects of veratridine (VER) on persistent sodium current (I(Na.P)), Na(+)/Ca(2+) exchange current (I(NCX)), calcium transients and the action potential (AP) in rabbit ventricular myocytes, and to explore the mechanism in intracellular calcium overload and myocardial contraction enhancement by using whole-cell patch clamp recording technique, visual motion edge detection system, intracellular calcium measurement system and multi-channel physiological signal acquisition and processing system. The results showed that I(Na.P) and reverse I(NCX) in ventricular myocytes were obviously increased after giving 10, 20 μmol/L VER, with the current density of I(Na.P) increasing from (-0.22 ± 0.12) to (-0.61 ± 0.13) and (-2.15 ± 0.14) pA/pF (P < 0.01, n = 10) at -20 mV, and that of reverse I(NCX) increasing from (1.62 ± 0.12) to (2.19 ± 0.09) and (2.58 ± 0.11) pA/pF (P < 0.05, n = 10) at +50 mV. After adding 4 μmol/L tetrodotoxin (TTX), current density of I(Na.P) and reverse I(NCX) returned to (-0.07 ± 0.14) and (1.69 ± 0.15) pA/pF (P < 0.05, n = 10). Another specific blocker of I(Na.P), ranolazine (RAN), could obviously inhibit VER-increased I(Na.P) and reverse I(NCX). After giving 2.5 μmol/L VER, the maximal contraction rate of ventricular myocytes increased from (-0.91 ± 0.29) to (-1.53 ± 0.29) μm/s (P < 0.01, n = 7), the amplitude of contraction increased from (0.10 ± 0.04) to (0.16 ± 0.04) μm (P < 0.05, n = 7), and the baseline of calcium transients (diastolic calcium concentration) increased from (1.21 ± 0.08) to (1.37 ± 0.12) (P < 0.05, n = 7). After adding 2 μmol/L TTX, the maximal contraction rate and amplitude of ventricular myocytes decreased to (-0.86 ± 0.24) μm/s and (0.09 ± 0.03) μm (P < 0.01, n = 7) respectively. And the baseline of calcium transients reduced to (1.17 ± 0.09) (P < 0.05, n = 7). VER (20 μmol/L) could extend action potential duration at 50% repolarization (APD(50)) and at 90% repolarization (APD(90)) in ventricular myocytes from (123.18 ± 23.70) to (271.90 ± 32.81) and from (146.94 ± 24.15) to (429.79 ± 32.04) ms (P < 0.01, n = 6) respectively. Early afterdepolarizations (EADs) appeared in 3 out of the 6 cases. After adding 4 μmol/L TTX, APD(50) and APD(90) were reduced to (99.07 ± 22.81) and (163.84 ± 26.06) ms (P < 0.01, n = 6) respectively, and EADs disappeared accordingly in 3 cases. It could be suggested that: (1) As a specific agonist of the I(Na.P), VER could result in I(Na.P) increase and intracellular Na(+) overload, and subsequently intracellular Ca(2+) overload with the increase of reverse I(NCX). (2) The VER-increased I(Na.P) could further extend the action potential duration (APD) and induce EADs. (3) TTX could restrain the abnormal VER-induced changes of the above-mentioned indexes, indicating that these abnormal changes were caused by the increase of I(Na.P). Based on this study, it is concluded that as the I(Na.P) agonist, VER can enhance reverse I(NCX) by increasing I(Na.P), leading to intracellular Ca(2+) overload and APD abnormal extension.


Subject(s)
Animals , Rabbits , Acetanilides , Pharmacology , Action Potentials , Calcium , Metabolism , Myocardial Contraction , Myocytes, Cardiac , Cell Biology , Patch-Clamp Techniques , Piperazines , Pharmacology , Ranolazine , Sodium-Calcium Exchanger , Metabolism , Tetrodotoxin , Pharmacology , Veratridine , Pharmacology
20.
Cell Journal [Yakhteh]. 2012; 14 (3): 171-176
in English | IMEMR | ID: emr-153854

ABSTRACT

The apoptosis of motor neurons is a critical phenomenon in spinal cord injuries. Adult spinal cord slices were used to investigate whether voltage sensitive calcium channels and Na[+]/Ca[2+] exchangers play a role in the apoptosis of motor neurons. In this experimental research, the thoracic region of the adult mouse spinal cord was sliced using a tissue chopper and the slices were incubated in a culture medium in the presence or absence of N/L type voltage sensitive calcium channels blocker [loperamide, 100 micro M] or Na[+]/Ca[2+] exchangers inhibitor[bepridil, 20 micro M] for 6 hours. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium [MTT] staining was used to assess slice viability while morphological features of apoptosis in motor neurons were studied using fluorescent staining. After 6 hours in culture, loperamide and bepridil not only increased slice viability, but also prevented motor neuron apoptosis and significantly increased the percentage of viable motor neurons in the ventral horns of the spinal cord. The results of this study suggest that voltage sensitive calcium channels and Na[+]/Ca[2+] exchanger might be involved in the apoptosis of motor neurons in adult spinal cord slices


Subject(s)
Animals, Laboratory , Apoptosis , Bepridil , Loperamide , Motor Neurons , Mice, Inbred BALB C , Calcium Channel Blockers , Sodium-Calcium Exchanger
SELECTION OF CITATIONS
SEARCH DETAIL